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Abstract Short-term and long-term population growth
rates can differ considerably. While changes in growth rates
can be driven by external factors, we consider another
source for changes in growth rate. That is, changes are
generated internally by gradual modification of population
structure. Such a modification of population structure may
take many generations, particularly when the populations
are distributed spatially in heterogeneous environments.
Here, the net reproductive rate Ry is not sufficient to char-
acterize short-term growth. Indeed, a population with net
reproductive rate greater than one could initially decline pre-
cipitously, or a population with net reproductive rate less
than one could initially grow substantially. Thus, we aug-
ment the net reproductive rate with lower and upper bounds
for the transient reproductive rate, R; and R,. We apply
these measures to the study of spatially structured salmon
populations and show the effect of variable homing fidelity
on short-term and long-term generational growth rates.
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Introduction

There is a growing recognition that short-term population
dynamics can differ considerably from long-term asymp-
totic trajectories (Caswell and Neubert 2005; Ezard et al.
2010; Hastings 2001, 2004; Stott et al. 2011; Townley et al.
2007). Indeed, short-term declines may precede long-term
asymptotic growth and, conversely, short-term growth may
transit into long-term asymptotic declines (Koons et al.
2007; Neubert and Caswell 1997). Such transient dynamics
may simply reflect changeable environmental conditions.
However, they may also arise from an internal origin, that
is, gradual changes in the population structure.

What form do gradual changes in population structure
take? When there are stages, structured population theory
(Caswell 2001; Cushing and Zhou 1994) tells us that the
long-term asymptotic growth rate is achieved only when
the population structure has achieved a corresponding stable
stage distribution. This distribution may take many years to
achieve, and when the distribution in stages differs from this
stable stage distribution, the growth rate also differs. There
may be more subtle changes in population structure at play
if populations are distributed spatially. For example, a popu-
lation that initially finds itself in poor quality habitat could
decline and take many years before finding its way to high
quality habitat where population growth is possible. It is this
second eventuality of spatial structure affecting growth rates
that we investigate in this paper.

The issue of population growth is of general interest in
theoretical and conservation ecology. In many cases, popu-
lation growth is calculated with matrix models. These are
discrete-time age- or stage- structured population models
that use demographic rates to project population dynamics
(Caswell 2001). The population dynamics of matrix models
can be analyzed with either the long-term population growth
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rate A1 or the net reproductive rate Rp. The population
growth rate A is given as the dominant eigenvalue of the
projection matrix, and the associated stable stage distribu-
tion is given by the corresponding nonnegative right eigen-
vector. The net reproductive rate, Ry, is interpreted as the
number of offspring produced by a fypical individual over
its lifetime (Caswell 2001). It is the dominant eigenvalue of
the so-called next generation matrix, and the corresponding
nonnegative right eigenvector represents the next generation
stable stage distribution . Here, A1 = 1 if and only if Ry = 1.
The population grows when A or R are greater than 1 and
declines when A or Ry are less than 1.

It is worth mentioning that the traditional method of
calculating R( involves matrix operations that can be com-
putationally complicated, particularly as the number of
compartments in the models increases. Fortunately, a novel
method to calculate and analyze R directly from the life
cycle graph of the matrix was developed in de-Camino-Beck
and Lewis (2007), and with this method, it is straightfor-
ward to obtain an analytical formula for Rg. This is true
even for complex life cycles, where the resulting expression
can often be interpreted in terms of biologically relevant
fecundity pathways. An fully algebraic counterpart of the
graph reduction method was developed in Rueffler and Metz
(2013), and various sets of sufficient and necessary con-
ditions for Ry to be a sum of contributions of fecundity
pathways are given therein.

Most matrix population models do not consider spatial
factors that affect population dynamics, and they typically
assume a closed population, without dispersal or migra-
tion. This is unrealistic when individuals are found in
subpopulations connected by dispersal or migration. This
is particularly relevant when demography varies spatially
among different habitats or subpopulations due to environ-
mental heterogeneity. Hence, it may be necessary to classify
individuals using geographical location as well as age or
stage. Such spatial population models describe a finite set
of discrete local populations, coupled by the movement of
individuals. Such models are well documented in human
demography where they are called multiregional models
(Rogers 1968, 1995). In this paper, we refer to them as
between-habitat patch models. A variety of scientific objec-
tives motivate the development of these models, including
investigating advantages gained by dispersal, critical num-
bers of patches for survival, the increase of species diversity
in patchy environments, influence of dispersal upon evo-
lutionary stable strategies, and the stabilizing influence of
dispersal (Allen 1987; Deangelis et al. 1986; Ellner 1984,
Gadgil 1971; Hamilton and May 1977; Horn and Macarthur
1972; Levin et al. 1984; Macarthur and Wilson 1967; Vance
1984).

Between-habitat patch models are particularly relevant
to modeling migratory species. Migratory species usually
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travel a long distance from one place to another for repro-
duction or in search of new habitats. They may spend
different life stages at different locations. Thus, migra-
tory species need to be treated, not as single homogeneous
population, but by explicitly including heterogeneity and
connectivity over space.

The goal of this study is to understand how the interplay
between connectivity and local population dynamics affects
short-term and long-term growth rates for a migratory popu-
lation in a network of heterogeneous patches. Our focus
is on migratory populations. We use between-habitat patch
models written in matrix form to describe the population
dynamics of migratory species where the life cycle of the
subpopulations is described explicitly in terms of stages, and
the population connectivity is realized by the migrations of
individuals between breeding and non-breeding areas. Here,
the state variables are the number of individuals in each rel-
evant stage class at each location. The key issue addressed
by this study is how the strength of population connectivity,
which is determined by homing fidelity during migration,
affects the persistence of migratory species.

As an example, we consider the members of migratory
Salmonidae family and examine the effect of migration on
population persistence. The homing fidelity during migra-
tion in salmonids is variable (Stewart et al. 2004). Some
migratory fish home with great fidelity while others show
a high rate of straying. This motivates us to consider the
important question: how does the degree of homing influ-
ence the population growth? We are interested in both long-
term and short-term growth rates. The long-term growth rate
is measured by the net reproductive rate Rg. The analysis
of the dependence Ry on the degree of homing fidelity
indicates that in the long run, the overall population has a
high net reproductive rate when most subpopulaitons show
strong homing fidelity while a small fraction stray.

However, there is growing recognition that short-term,
transient population dynamics can differ in important ways
from long-term dynamics. For the short-term dynamics, we
are interested in the growth rate over a single year or repro-
ductive rate over a single generation. To understand the
range in l-year growth rates, we introduce two measures,
A7 and A, that yield the lowest and highest possible yearly
growth rates, respectively. We also consider dynamics over
a single generation, a more relevant time scale for ecological
considerations of species at risk of extinction or posing an
invasion threat. We introduce two new measures of transient
intergenerational growth, R; and R,, where R; describes
the lowest possible single generation population growth
rates resulting from the initial distribution with all indivi-
duals in a poor quality patch, and R, describes the highest
single generation population growth rates resulting from the
initial distribution with all individuals in a good quality
patch.
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The effect of homing fidelity on population growth is
subtle. Its effect should depend upon whether individuals
are initially in high quality or poor quality habitat. When
individuals are in high quality habitat, homing fidelity will
ensure that they remain in this good habitat, and thus can
help maintain strong population growth. When individuals
are in poor quality habitat, homing fidelity may prevent
them from exploring and discovering the good quality habi-
tat and can help to maintain weak population growth. To
help understand these features mathematically, we investi-
gate the influence of homing fidelity on Ry, R;, and R,,.
The quantity R, depends on the homing fidelity in a similar
way to Rg. That is, strong homing fidelity can increase R,,,
yielding the highest possible single generation population
growth rates as well as yielding a high net reproductive rate
Ro. However, the relationship between R; and the homing
fidelity is opposite: homing fidelity can reduce R;, reducing
the lowest single generation population growth rates. Thus,
while homing fidelity may increase the net reproductive
rate, which is relevant to asymptotic time scales, it can
reduce the reproductive rate on short time scales, particu-
larly when the population is distributed spatially amongst
good and poor quality patches in an unfavorable manner.

The rest of this introduction is organized as follows. First,
we briefly introduce matrix models and show how to calcu-
late Rg using a graph reduction method. Then, we use a sim-
ple dispersal model to show the difference between asymp-
totic dynamics and transient dynamics in Section “A simple
example: transient behavior versus asymptotic behavior”.
Finally, we introduce the life cycle of salmonidae as a focal
example for demonstrating our approach.

Calculation of the net reproductive rate

Matrix models are widely used for demographic analysis
of stage-structured population dynamics. A stage-structured
matrix model is defined as

x(t+1) =Px(@), (1)

where x(t) = [x1(t), -, x,()]" is a vector of stages at
time ¢t and P is an n by n nonnegative irreducible projection
matrix describing transitions from one stage to another one
(Caswell 2001). Matrix models can also be represented as a
life cycle graph where each node in the graph corresponds
to a stage and each arrow represents transitions from node
to node (Fig. 1). The nonnegative matrix P is irreducible if
its life cycle graph contains a path from every node to every
other node. Biologically, this means that each stage is con-
nected to all other ones, given enough time steps (Berman
and Plemmons 1994; Ortega 1987).

One way to analyze the population dynamics of stage-
structured matrix model is to calculate the net reproductive

Pb21
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Fig. 1 A simple projection matrix and its associated graph. There is
a directed edge in the graph for every nonzero entry p;; in the matrix.
For a transition, the edge is directed from node j to node i

rate, Rg, the average number of offspring produced by
an individual over its lifetime (Caswell 2001). In order to
calculate R, the projection matrix is decomposed as P =
T +F, where T = (7;;) contains the survivorship transitions
and F = (f;;) the fecundities. Each entry in T describes the
probability of an individual in stage j surviving to stage i in a
single time step. This decomposition allows for the calcula-
tion of the net reproductive rate, Ry, defined mathematically
as

Ro=p (F(I _ T)*‘) , )

where I is the identity matrix and p(-) denotes the spectral
radius of the matrix F(I— T)~!, which is referred to as the
next generation matrix (Li and Schneider 2002). It has been
shown (Cushing and Zhou 1994) that when Ry >1, the
population grows, when Ry < 1, the extinction state is sta-
ble, and when Ry = 1, the extinction state is neutrally
stable.

The calculation of Ry using formula (2) is not always
algebraically straightforward when there are many stages.
First, the inverse of I —T must be computed and then
the eigenvalues of the next generation matrix must be
calculated. However, a novel graph reduction method (de-
Camino-Beck and Lewis 2007) provides a simple approach
(see Appendix A).

The graph reduction method not only provides a straight-
forward approach for calculating net reproductive rate
directly from the life cycle graph, but also yields an expres-
sion of Rg as sum of contributions from the different pos-
sible fecundity pathways which is, biologically, a sequence
of steps in the life cycle that lead to the production of
new individuals (de-Camino-Beck and Lewis 2007). An
example of the graph reduction method applied to a simple
stage-structured model is shown in Fig. 11 in Appendix C.

A simple example: transient behavior versus asymptotic
behavior

In this section, we use a simple migration model to show
how short-term transient behavior of matrix models can
be significant. The analysis then motivates us to introduce
two measures that characterize the maximum and minimum
transient growth rates.
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We consider a population distributed in two discrete
patches. We define x1 (¢) and x(¢) to be the size of subpopu-
lations in these two patches in year ¢. Their growth rates are
p1 and p», respectively. We assume that p; > 1 > p> so
one patch is a source and the other a sink. The migration rate
of individuals from one patch to another is €. We assume
that € is the same for both patches. We refer to the quantity
€ as connectivity and the quantity 1 — € as homing fidelity.
The dynamics of this population are described by the model

(xl(l+1)>=<p1(1—6) p2€ ><x1(t)> 3)
x2(+1) pie  pa(l—e) )\ x2() J-

The growth rate of the overall population (denoted by A1),
given as the dominant eigenvalue of the projection matrix
(denoted by P) in the model (3), can be calculated as the
larger root of the quadratic equation:

A = (p1+ p2)(1 = A1 + p1pa(l — 26) = 0. “

Clearly, the growth rate of overall population, A1, is a con-
tinuously differentiable function with respect to the migra-
tion rate €. When € = 0, A; = max{py, p2}, whene = 1,
A = /p1p2. When 0 < € < 1, the dependence of A; on
€ (left panel of Fig. 2) indicates that the population growth
rate decreases as the migration rate increases.

The above eigenvalue analysis describes asymptotic
growth rates and ignores short-term transient behavior,
because the asymptotic growth rate (i) is realized only
when the population has reached so-called stable structure
(given by the right eigenvector of P associated with Ap).
Natural questions arise: what happens before the asymp-
totic dynamics if the initial population distribution is not
stable? how long it will take for the population to reach its
asymptotic behavior? To answer these questions, as exam-
ples, we consider the solutions to the system (3) with initial
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distribution [x1(0), x2(0)] = [0, 1] and connectivity either
€ = 0.01 or € = 0.3 (right panel of Fig. 2).

The asymptotic dynamics (left panel of Fig. 2) show that
A1(0.01) > X11(0.3) > 1, which implies that the popula-
tion will eventually grow exponentially for both values of €,
and the population will grow faster when € = (.01 than it
will when € = 0.3. However, as shown in the right panel
of Fig. 2, the population initially declines for both values of
€, and the population level when € = 0.3 is actually higher
than that when € = 0.01 for many years. This is because the
local dynamics of the subpopulation in poor quality patch
dominates the model dynamics for a long time, since the
individuals are initially distributed in the poor quality patch
and the connectivity strength € is small.

Figure 2 highlights two key points: (1) short-term dynam-
ics of system may be very different from long-term dynam-
ics, and (2) transient behavior can be dramatic, long lasting,
and counterintuitive. Therefore, the asymptotic growth rate
A1 does not represent population dynamics in the short-term,
and transient analysis of system is essential.

Motivated by the above example, we are concerned about
short-term growth rate of a population whose dynamics are
described by the model (1). In particular, we would like
to find bounds for population growth rate. To this end, we
define

(D, &)

A= min
x(0)=0,[x(0)]1=1

as the minimum population growth in a single time step,
where |- |1 is the £1 norm. It is straightforward to show that

min
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Fig. 2 (Left) The dependence of growth rate A; on migration rate €. (Right) The solutions of the model (3) with same initial distribution
[x1(0), x2(0)] = [0, 1] but different connectivity: either € = 0.01 (solid line) or € = 0.3 (dashes line)
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the minimum sum of column vectors of projection matrix P.
The proof is provided in the Appendix B.
Similarly, we define

A= max [lx(D]]1, (N

x20,|lx ()1 =1
as the maximum population growth in a single time step.
This is,

Ay =  max

x>0,[|x])1=1

n
[IPx]l; = lrg;;jpg, ()
1=

the maximum sum of column vectors of projection matrix
P.

The quantities A; and A, bound the asymptotic growth
rate Ap:

A <AL <Ay 9)

(Horn and Johnson 2013).

Applying the formulas (6) and (8) to the model (3), we
find that A; =min{p1, p2} and A, =max{pj, p2}, so they
are independent of migration rate €. For this reason, the two
solution curves for different € values (right panel of Fig. 2)
have the same minimum one-step growth rate from ¢ = 0 to
t = 1, which is achieved when [x1(0), x2(0)] = [0, 1].

Recently, Caswell and Neubert introduced a related set of
indices into the ecological literature (Neubert and Caswell
1997) focusing on transient dynamics resulting from depar-
ture away a stable population structure, principal among
these was “reactivity”. Caswell and Neubert defined the
reactivity (Caswell and Neubert 2005) as the maximum rate
of departure from equilibrium X = 0 immediately following
a perturbation, i.e.,

(10)

v = log (I max IIX(1)||2) ;

x(0)]2=1
where || - ||2 is the €2 norm of vector. If v > 0, the equili-
brium point is said to be “reactive”. Actually, reactivity also
gives the maximum growth rate from ¢+ = Oto¢t = 1 as
measured using the £, norm.

Note that reactivity (10) uses > norm to describe the
length of a vector in Euclidean space, which is the norm
most amenable to mathematical manipulation (Neubert and
Caswell 1997). However, it is not easy ascribe a biological
meaning to the £, norm. We employ £; norm to measure
the length of a vector in the definition of X, since £; norm
is the sum of a non-negative vector with a clear inter-
pretation as the total number of “individuals” across all
stage classes. Also, we consider the geometric growth rate
instead of arithmetic growth rate given in the definition of
reactivity.

Two more new indices of transient dynamics that are
related to next generation matrix are introduced in Section
“Transient measures of generational population growth: R;
and R,”. Such indices are applicable to a generation time

scale. By considering transient dynamics on a generational
time scale, we gain two advantages: (1) a generational
time scale is likely most relevant to endangered species,
and (2) analysis on a generational time scale is much
more amenable to algebraic calculations, because most next
generation matrices are highly degenerated with low rank.

Salmonidae

Salmonidae is a family of ray-finned fish, including salmon,
trout, char, freshwater whitefish, and grayling. Salmonids
are native to the northern hemisphere, but have been intro-
duced to many areas. There are currently 66 species recog-
nized in this family, but the number of the species is actually
greater than this (Salmonidae 2014). Salmonid species have
experienced dramatic declines in abundance during the past
several decades as a result of human and natural factors
(Pacific Salmonids 2014).

Member of the salmonidae family share a very similar
life cycle, following a series of stages as it develops from an
egg to an adult fish. Most salmonid are migratory. Spawning
always takes place in fresh water. During spawning, eggs
are deposited by the female in an excavated nest on the sub-
strate called a redd. Milt (sperm) is then deposited from the
male fish to fertilize eggs. The fertilized eggs remain buried
in the gravel and rocks of the stream bottom until about
1 month have passed. The fertilized eggs develop and hatch
into alevin in the late winter or spring. Once it has absorbed
its yolk, the alevin becomes a fry. Young fish are generally
considered fry during their first year. Juvenile salmonids
typically remain in fresh water for 1-3 years before they
are ready to migrate downstream to large rivers, lakes, or
oceans where they will spend the next phase of its life. When
the fish have finished growing and attain sexual maturity,
most species have a remarkable homing ability, typically
returning to their natal streams to spawn even after hav-
ing traveling hundreds of miles. Member of the salmonidae
family can be either semelparous or iteroparous. Semel-
parous salmonids such as Pacific salmond die within a few
days or weeks of spawning. Iteroparous salmonids such
as Atlantic salmon and bull trout (Salvelinus confluentus)
spawn more than once over their lifetimes.

We choose iteroparous salmonids as our study focus. In
terms of the life history of iteroparous salmonids, we con-
struct a stage-structured matrix model for resident species
by dividing the population into four classes eggs: (E), fry
(F), juveniles (J), and adults (A). Migratory salmonids
spend different life stages at different locations. They make
two types of migration in terms of their life cycle. The
juvenile outmigration is from upstream freshwater rearing
grounds to downstream large river or ocean; the adult up-
river migration is from the large river or ocean back to
the spawning grounds. We then formulate a two-patch
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stage-structured model for migratory species, one patch rep-
resents the spawning area in upstream, and another patch
represents the downstream habitat where the adults live.
The variables in the two-patch model are eggs (E;), fry
(F1), and juveniles (J7) in patch 1 and juveniles (J>) and
adults (A3) in patch 2. In this model, successful migration is
an important factor that affects the population persistence.
The two-patch migration model assumes that both upstream
habitats and downstream habitats are spatially uniform, and
that the population therefore has 100 % homing fidelity
during migration. In reality, both upstream and downstream
may contain many isolated local habitat due to environ-
mental heterogeneity, this allows some individuals show a
certain rate of straying during migration as observed. There-
fore, to study how the interplay between homing fidelity
and local population dynamics allows persistence in a net-
work of heterogeneous patches, we extend the two-patch
model to a four-patch interacting model by dividing the
upstream spawning region into two patches and downstream
into another two patches.

To address the question of homing influence on per-
sistence, on the basis of four-patch interacting model, we
introduce a connectivity constant € to measure the homing
degree of migratory fish, which also implies the strength
of connectivity among subpopulations. We investigated the
dependence of the overall population persistence on the
strength of connectivity among subpopulations distributed
at different locations and connected by migration.

This paper is organized as follows. In Section “Ry for
migratory salmonids”, we develop a two-patch model for
migratory salmonids and calculate Ry for this population.
We then extend the two-patch model to a four-patch interac-
ting model. Based on the interacting model, we obtain a Ry
equation using the graph reduction method. We then study
the effect of connectivity strength on Rg. In Section “The
effect of homing fidelity on transient population persis-
tence”, we introduce new measures of transient popu-
lation persistence, R; and R,. We then investigate the
dependence of R, and R; on connectivity strength.
Finally, a brief discussion section completes the

paper.

R for migratory salmonids

Matrix models provide an intuitive modeling strategy where
the life cycle of the organisms can be described in terms
of ages or stages. Salmonids may have either a resident
or migratory life history. Resident species complete their
entire life cycle in the same stream. Based on the life cycle
of salmonids, we construct a stage-structured matrix popu-
lation model for resident species and calculate the net
reproductive rate R for this population (see Appendix C).

@ Springer

Most salmonids are migratory. Two types of migration
behavior are related to the migratory species: (1) Spaw-
ning migration takes place in breeding season. Adults move
upstream to the spawning area after spawning, they return to
the downstream, and (2) juvenile migration involves young
fish. When young fish grows to juveniles, they leave the
spawning area to reach downstream habitats of their parents.
In this section, we first develop a two-patch model to
describe the dynamics of migratory salmonids. The two-
patch model is then extended to a four-patch interacting
model due to spatial heterogeneity.

Model for migratory salmonids

To describe the dynamics of migratory salmonids, we
denote the upstream and the downstream by patches 1 and
2, respectively. We define the population vector N;(f) =
[E;(t), F;(t), Ji(t), A;(1)]" to be the density of the popula-
tion at the end of the breeding season in year ¢ at the patch
i (i = 1,2). We introduce notations, mg,, my, and m; to
represent the migration rates of adults, fry, and juveniles,
respectively. More specifically, m, represents the probabil-
ity that adults living in the patch 2 in year ¢ will appear at
the patch 1 in year # + 1 for reproduction, m y is the proba-
bility that fry which live in the patch 1 in year ¢ will appear
at the patch 2 as juveniles in year ¢ 4+ 1 due to growth and
emigration, and m ; is the probability that juveniles located
at patch 1 in year ¢ will be found at the patch 2 in year ¢ + 1.
We assume that all of spawning adults move back to patch 2
after breeding season (A1 = 0) and that there are no eggs or
fry in patch 2 (E2 = F> = 0). The dynamics of migratory
population can then be described by the following matrix
model:

Et+1) 0 0 0 0 mab\ [ E1()
Fi(t+1) Pfe 0 0 0 0 Fi(t)
Hhe+) [=] 0 A—mppjy A—mppj; 0 0 Ji(0)
ht+1) 0 mypjs mipjj  Pij O L)
Ayt +1) 0 0 0 Paj Paa A (1)

an

where the meanings of notations b, pf., pjf, Pjj, Paj» and
Paa are the same as those in the model (26) (Appendix C).

We calculate the net reproductive rate R for the migra-
tory salmonids using the graph reduction method. The cal-
culation procedure is shown in Fig. 3 (see Appendix D for
Fig. 12b—d). From the equation of R (Fig. 3e), we see that
the proportion of individuals that start as eggs in upstream,
eventually survive to become breeding adults and migrate to
downstream is given by

PrePajPif ( (L —mp)m;pjj )
+myg),
(I = paa)d —p;jj) \1 = —mj)pj;
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Fig. 3 a The full transformed
graph. e Resulting net
reproductive rate

(1 —mys)pj mip;;
/F? FIPif /}1\ iPjj

bm, R, !

DPaj
(o —22

e Ry =

the expected number of eggs produced per breeding adult
is b, and the proportion of breeding adults that migrates
from downstream to upstream during breeding season is m,,.
Multiplying these quantities yields Ry.

Model for interacting migratory populations

It is widely believed that salmonids exist in environments
composed of numerous ecological “islands” scattered over
many local patches (Fraley and Shepard 1989; Under-
wood and Cramer 2007). This motivates us to extend the
two-patch model to a multiple-patch model toward better
understanding the dynamics of the population which is sub-
divided or patchy. For convenience, we extend the two-patch
model to four-patch matrix model by dividing the upstream
into two patches and downstream into another two patches.
As we will see in the Discussion section, the four-patch
model can be further extended to multiple-patch matrix
model.

Model formulation and Ry

We assume that there are two small tributaries in upstream,
denoted by patches 1 and 3, and two big streams in down-
stream, denoted by patches 2 and 4. Accordingly, the
population vector [E; (), Fi(t), J; O represents the den-
sity of the population in the patch i (i = 1,3) in year
t, and the population vector [Ji(¢), Ar()]T is the den-
sity of the population in the patch k (k = 2,4) in year
t. We use the similar notations as those in models (26)
(Appendix C) and Eq. 11 but assume that the popula-
tion migration and survival rates depend on patches, hence
mi,k represents the proportion that adults which live in the
patch k in year ¢ will appear at the patch i in year t 4 1,
p]]”f is the proportion that fry which live in the patch i in
year t will appear at the patch k in year ¢ 4+ 1 as juve-
niles. Similar meanings for other notations. The four-patch

2

=

Djj Paa

mgpjf

(1 = paa)(1 = pjj;)

bmgp rePajpif ( (1 —my)m;p;; Tm >
1 — (1 —m;)pjj

interacting model is given by the following system of
difference equations:

Ei(t+1) = bym2Ax(t) + bym* A4 (1)

Fit+1) = py Ei(0)

B+ = (1=m3 = mi") p} R
+(1=m = mi) pln®

E3(t + 1) = bym>? Ax(t) + bym>* A4(r)

F3(t+1) = p},E3(0)

B+ = (1=mF —mP) pl B0

+ (1 - m§3 — m‘j‘s) p;jh(l)
Dt +1) = m¥ pAL i) +m3 pil i)

+m% Py F3(0) +m3 pi I3 (1) + p3;a(0)
As(t +1) = pa;a(0) + Py Ax(t)
Jat + 1) = m pip Fi(@) +m pli i)

+mP i Fa(t) +m7 ppl () + pljJalt)
Aa(t+1) = piJa(t) + pagAa(o). (12)

The procedure of calculating Ry using graph reduc-
tion method is presented in Fig. 4 (see Appendix E for
Fig. 13b-f).

Following the Fig. 4d (Appendix E), we set

1 1 21,21
. paimytbipy, . m3 plp (1 - m.t') pjgm pjj
12 = 21 = )
1 = Pia T 1— (1 —mbpt | (1-p2
Ji i'Pjj pjj
1 1 41 .41
_ Pama'bipy, _mypl (1 - ’"f) Pifmy pjj
4= T BT L= d=mhpt](1=p%)
g i'Pjj Pjj
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41,41

My Pjf

21,21
myPjf

41, 41
mj Pjj

mf}3 pj;

14; -1
m, b1 Ry

Fig. 4 a The full transformed graph

2 .32 3 2323 3 3 2323

_ paymiibapy, _mPpy (1 m./’) Pjfmy P

g = ST = — —.
ia P [r=a=mhpy](1-s%)

4 34 3 43 43 3 3 43 43

Paj™ma b307, my Py (l mf) Pis™y Pii

g4 = . 8= 4 - Y
= Pla t=r [ a—mhpd] (1- %)

13)

where m'. represents the proportion that fry living in the
patch 1 in year ¢ will appear in the downstream as juveniles

for further growth, that is, m} = m? + m‘}-l. Similar mea-

ning for the notations ml, m> , and m>. Then, from the

Fig. 4; f (Appendix E), Ry can be calculated as the larger
root of the following quadratic:

R(z) — (821812 + 841814 + 823832 + 843834) Ro
— 821832843814 — 841834823812
+ 821812843834 + 841814832823 = 0. (14)

It is easy to find that the discriminant of the quadratic
(14) is positive; hence, the Eq. 14 has two real roots. If all
spawners home with 100 % fidelity when they migrate, for
instance, all spawners living in patch 2 always show fidelity
to their natal tributary stream, say patch 1, and all fry and
juveniles living in patch 1 emigrate to the patch 2, the habi-
tat of their parents, and similar homing behavior for the
subpopulation living in patches 3 and 4, then the four-patch
model reduces to two disjoint two-patch models. Since there
is no interaction between patch 1 and 4 or between patch
2 and 3, letting g14 = g41 = g32 = g»3 = 0in Eq. 13,
we obtain the net reproductive rates R(l)2 = g12821 for the

@ Springer

subpopulation living in patches 1 and 2, and RS4 = 834843
for the subpopulation living in patches 3 and 4, which are
consistent with the Ry expression e in Fig. 3, resulting from
the two-patch model (11).

However, salmonids do not always exhibit strong homing
fidelity: the homing ability of salmonids appears to be varia-
ble and is perhaps an adaptive trait that is subject to natural
selection (McPhail and Baxter 1996; Stewart et al. 2004).
The degree of homing maybe related to stream size and sta-
bility (McPhail and Baxter 1996). Since the connectivity
strength is realized through migration rates, a diagram
which describes the interactions is presented in Fig. 5.

From Fig. 5, when 0 < € <« 1, most migrations take
place between patch 1 and patch 2 and between patch 3
and patch 4, very few migrations take place between patch
1 and patch 3 or between patch 2 and patch 4. For this
case, we think of the migration routes between patch 1 and
patch 2 and between patch 3 and patch 4 as homing routes,
and the migration routes between patch 1 and patch 4 and
between patch 3 and patch 2 as straying routes. Thus, when
€ is close to 1, the above-mentioned homing routes become
straying routes and straying routes become homing routes.
When € = 0 or ¢ = 1, only homing routes exist. Finally,
when € = 1, there is no connection between patch 1 and
patch 2 or between patch 3 and patch 4. The relevant net
reproductive rates for the two disjoint two-patch models are
RY* = g14g41 and R} = g32823.

Clearly, if two patches (patches 1 and 3) in upstream are
equal in their quality and two patches (patches 2 and 4) in
downstream are equal as well, then homing versus straying
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would make no difference, in this case, the degree of homing
fidelity does not play a role on the reproductive rate. In our
study, we always assume that the patches are unequal in
their quality.

The effect of connectivity strength € on R

In what follows, we use the Ro equation (14) to investigate
the effect of connectivity strength on Ry. Following Fig. 5,
we rewrite g12, g14, and g1 given in Eq. 13 as

(1= mgpg;bipy,

g = =: (1 —€e)G2,
1- pga
emipijblp}e .
g4 = ————— =1eGy
1_paa
1\ 1 1,21
1 - G)m;p%} (1 —mf) ij(l - E)mjpjj
g1 = —
L=ri = a-mbphi(1-p%)
= (1 —e)Gyi,

Similarly, we can write

g41 = €Gy1, g3 =¢€G3, g =¢€eGy,

843 =(1—-6)Gy3, g3a=(1—-¢€)G3.

Thus, from the Rp equation (14), we have Ry as the larger

root of the quadratic:

R3— [A(l e Bez] Ro—Ce*(1—€)?> + De* + E(1—e)* = 0,
(15)

Fig. 5 Connectivity strength €
is realized by migration rates.
Here m? represents the

where

A

G21G12 + G43G34, B =G41G14 + G23G3p,
C = G21G3G43G14 + G41G34G23G12,

D = G41G14G23G3p,

E = G21G12G43G34.

When € = 0 or € = 1, the system is reducible and is decou-
pled into two subsystems, each of which has a different Ry.
Ry can no longer be defined for the overall system because
it is no longer irreducible. In particular, this happens when
€ = 0and Ry = G12G»1 or G34G43, and when € = 1 and
Ro = G14Gy41 or G33G23.

However, when 0 < € < 1, the overall system has only
one Ry, and (15) implies that Ry is a continuously differ-
entiable function in €; hence, the sensitivity of Rg to € can
be calculated by differentiating (15) with respect to € to
obtain 0 Rp/de. An analytical calculation of d Ry/de when
€ is close to 0 and 1 is provided in Appendix F.

Mathematically, when € is not close to 0 or 1, it is dif-
ficult to analyze the rate of change of Ry with respect to €
from (15). Next, We use two examples to understand how
the connectivity strength € affects Ry. We assume that in
both upstream and downstream, one patch has better living
condition (population has higher vital rates) than another
one. The relation between R and € is plotted in Fig. 6.

As shown in Fig. 6, when € = 0 or ¢ = 1 (i.e., there is no
migration through straying routes), the subpopulation that
migrate between two high quality patches has maximum net
reproductive rate, denoted by R, and the subpopulation

(m}c + m})(l —€)

proportion that adults emigrate 1 < 74 2
from the patch 2 to upstream for 2
reproduction, that is, ma ( 1 - 6)
mg = m‘ll2 + mgz, here
ml? = m2(1 — €) and
m3? = m2e. Similar notations
are applied to other migration 4 3 3
rates mae (mf + mj)e
< _=
2 1 1
mge€ (m f +m J )6
3 3
(mf + mj)(l —€)
3 ) >( 4

(1 — €)
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Fig. 6 The relation between the Ry and the connectivity strength €.
(Left) Patch 3 is better than patch 1, patch 4 is better than patch 2.
by = SOOm_O3mf 04m_06pfg_015p =

0.1, p}; = 0.12,p2, = 015 p2 = 0.18,p2, = 02,p7} =
0.125, p21 = 0.135,b3 = 750,m> = 0.6,mj. = 0.9,p~}e =

s
0.23, p/f 0.15, pu = 0.18, pU 0.195,p3j = 0234, p* =

that migrate between two poor quality patches has minimum
net reproductive rate, denoted by R(‘)“i“. In particular, the left
panel of Fig. 6 indicates that RT™ = R3*, R?™" = R[?, the
right panel of Fig. 6 shows that R = R(1)4, Rg‘i“ = RSZ.
As shown by the dashed lines in the Fig. 6, the slopes of
the curves are negative when € is close to 0, the slopes of
the curves are positive when € is close to 1 (see Egs. 29—
32 in the Appendix F for corresponding analytical results).
Moreover, the left panel indicates that Ry is less than but
close to Ry™ when € is close to 0, the right panel shows
that Ry is less than but close to Ry™ when € is close to
1. These two examples imply that the overall population
has a high net reproductive rate if most migrations (homing
routes) occur between high quality patches or between poor
quality patches, and very few migrations (straying routes)
take place between high quality patches and poor quality
patches. Hence, the high quality patches can be consid-
ered as “sources” and poor quality patches as “sinks.” Ry is
largest when the sources are isolated from the sinks.

To further understand the relation between Rg and con-
nectivity strength €, we assume that every patch has high
or poor quality randomly, more precisely, we assume that
the probability that each patch has high (poor) quality is 0.5
(0.5). We make Monte Carlo simulations by running 2000
samples. The relation between the mean of the net repro-
ductive rates from 2000 samples and € is plotted in Fig. 7.
Figure 7 indicates again that a high Rp value occurs when
most of the population homes with great fidelity while the
remaining ones stray.
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0.26, p} = 0.15, p3? = 0.18, p} = 0.17, p}} = 0.19. (Right) Patch
1 is better than patch 3, patch 4 is better than patch 2. b3 = 330, p}e =

30 _ 3 _ 30 _ 30 _ 23 _
0.1,m} = 03,m} = 04,p3, = 007,p}, = 008 p}; =

0.11, pff = 0.12, pﬁ = 0.13, pﬁ = 0.14. Other parameters are the
same as in the left panel

The effect of homing fidelity on transient population
persistence

The study on the effect of homing fidelity on net repro-
ductive rate Ry in the previous section concentrates on the
asymptotic dynamics of the interacting model (12). The pur-
pose of this section is to investigate the impact of homing
fidelity, determined by connectivity strength €, on transient
growth rates based on the interacting model (12). By numer-
ically solving the interacting model (12), we first show
that depending on different initial distributions and con-
nectivity strengthes, the population exhibits very different

N
)

Net reproductive rate, I%
- - - N N
> o ® N &

-
N

0.8 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Connectivity,

Fig. 7 The relation between the mean of net reproductive rates of
2000 realizations and the connectivity
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transient growth rates that long-term results of Ry analysis
cannot reveal. This then motivate us to introduce two new
measures, R; and R, to predict the lowest and highest gen-
erational growth rates, respectively. Finally, we examine the
effect of the migration behavior of subpopulations on R; and
R,.

Transient behavior of interacting model

We consider a population whose dynamics is presented by
the matrix model (1). According to Eq. 2, the net repro-
ductive rate of the population, Ry, is given as the dominant
eigenvalue of the next generation matrix F(I — T)™'.
Hence, there exists a dominant eigenvector £ > 0 such that

F(I—T)'¢ = Ré. (16)

Under the constant conditions, the next generation pop-
ulation will ultimately grow at the rate Ry and has the
so-called stable structure (i.e., the distribution of abundance
across stage, patch proportional to the eigenvector £). This
implies that our previous discussion about the dependence
of Rp on connectivity strength € assumes a stable popula-
tion structure. The question arises as to what to expect if
the population structure is not stable? In particular, we are
interested in the following questions: (1) what is the short-
term behavior of the system if the distribution of abundance
across patch is variable? (2) How does homing fidelity
affects short-term growth rate? To answer these questions,
we solve the interacting model (12) using the same param-
eters as those in the left panel of Fig. 6. We compare the
model solutions by choosing same connectivity strength

- 1.6/ S
=
% 4 1
g 12 Eggsinpatch3 - 1
c 1
o
® 08 i
3
g 05
o
® 04 ]
s
L
0.2 /Eggs in patch 1 1

o

12 14 16 18 20

o
N
o
o

8 10

Time t
Fig. 8 (Left) Comparison of overall population size with same €
0.01, but different initial population distribution: either x(0)=[1, 0, 0,
0,0,0,0,0,0,0]" (solid line) or x(0)=[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]”
(dashed line). (Right) Comparison of overall population size ||x(¢)|];

(=)

(e = 0.01) but different initial distributions (all individuals
as eggs in the poor quality patch and all individuals as eggs
in the high quality patch) (left panel of Fig. 8). We also
compare the model solutions by choosing same initial dis-
tribution (all individuals as eggs in the poor quality patch)
but different connectivity strengthes (¢ = 0.01 and € = 0.2)
(right panel of Fig. 8).

The left panel of Fig. 8 indicates that depending on dif-
ferent initial population structures, the transient solutions of
the model are very different, even though their asymptotic
behaviors are the same because of the same Ry value. In
fact, no matter what the initial distributions are, the popula-
tion will eventually grow due to Rp(0.01) > 1 (left panel of
Fig. 6).

The dependence of Ry on € (left panel of Fig. 6) shows
that Ry(0.01) > Rp(0.2) > 1; hence in the long run, the
population will eventually grow for both values of €, and the
next generation population will grow faster when € = 0.01
than it will when € = 0.2. However, as shown in the right
panel of Fig. 8, with the initial distribution of all individuals
as eggs in the poor quality patch (patch 1), the total popula-
tion size decreases dramatically for both values of €, and it
takes a long time to achieve exponential growth. The popu-
lation level when € = 0.01 is lower than that when € = 0.2
for a long time.

Transient measures of generational population growth: R;
and R,

As we see from Figs. 2 and 8, the transient behavior of sys-
tem may last a long time before the asymptotic behavior
is achieved, thus the transient dynamics may be at least as
important as asymptotic dynamics. Most indices for

Total population size: IIx(t)II1
o = o
S [e2) oo -

o
N

0 10 20 30 40 50 60

with same initial population distribution x(0)=[1, 0, 0, 0, 0, 0, 0, 0, 0,
017, but different connectivity strength €: € = 0.01 (solid line),e = 0.2
(dashed line). The solid lines in both panels show the same trajectory
but over different time scales
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quantifying transient behavior, such as reactivity (10), A;
(6), and XA, (8) are too immediate to adequately describe
transient behavior of the system. To avoid the “instanta-
neous” or “one time step” weakness of such indices, here
we introduce two new measures, R; and R, related to the
next generation matrix, to describe intergenerational tran-
sient behavior. Noticing that most next generation matrices
are degenerate, we define R; and R, based on the dominant
submatrices of the next generation matrices, rather than next
generation matrices themselves.

For convenience, we denote the next generation matrix
FI — T)~! by Q. In the fecundity matrix F, the (i, j)
entry represents the expected number of i-class offsprings
produced by a j-class individual per unit of time; in most
matrix models, the number of offspring classes is less than
the number of total classes, therefore, most fertility matri-
ces are singular including zero rows. In those matrix models
including only one newborn class, F has only one nonzero
row, say the first row, consequently only the first row of
Q is nonzero. This means, in this case, that Q has 0 as an
n — 1 repeated eigenvalues, and one dominant eigenvalue
(net reproductive rate Rg) is the first row, first column entry.

More generally, suppose that there are j > 1 newborn
classes. Without loss of generality, we list first j rows so
that the last n — j rows of F consist of zeros. If we denote the
ith row of F by F; and jth column of (I — T)~! by Tj,1.e.,

Fq
F=|F [, a-D'=@, . w),
F,
then
F]‘Cl . F1‘L'j Fl‘l,'j_H F]‘L’n
Q= Fj‘L’1~'~Fj7,'j FjTj+1 . Fj‘L’n
0O --- 0 0 0
0O --- 0 0 0

Thus, the dominant eigenvalue of Q (net reproductive
rate Rp) is the dominant eigenvalue of the submatrix from
the upper left-hand corner, we denote it by Qj.

We define

R; = the minimum sum of column vectors of the
matrix Q, a7

and

R, = the maximum sum of column vectors of the
matrix Q. (18)
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Then, we have
R < Ry = Ry. (19)

Note that if the fecundity matrix F has only one nonzero
row, say the first row, then Q; degenerates into a one by one
matrix with element F;t;, in this case, R; = Ry = R, =
F]T].

Similarly as in the definition of A; (6) and A, (8), next
we link the above definitions of R; (17) and R,, (18) to min-
imum value and maximum value of the set {||Qx||{ : x >
0, ||x|l1 = 1}, respectively. For any x = [xg,--- ,x,,]T,
Qx =[y,---,»;,0,--- , 017, where y; = Fyrixy+---+
Fytyxn, k = 1,---, j. Hence, as an operator, the range of
the next generation matrix Q, denoted by Ran(Q), is the set
of n-dimensional vectors with the last n — j elements zero.
We observe that

R = ~ min
x€RJ,x>0,||x|[1=1

Qsxll1 = 1QxIl1, (20

min
x€Ran(Q),x>0,[|x|[;=1

the minimum generational growth rate when initial popu-
lation distributions belong to Ran(Q),

1QsxIl =

R, = - max
XeR/ x>0, x|[1=1

[1Qx|l1, (21)

max
x€Ran(Q),x>0,||x||;=1

the maximum generational growth rate when initial popula-
tion distributions belong to Ran(Q). Thus, R; and R,, can be
understood in terms of the worst or the best possible initial
conditions for intergenerational growth. In particular, R; can
be thought of as the intergenerational growth rate under the
worst possible initial conditions, and R, can be thought of
as the intergenerational growth rate under the best possible
initial conditions.

Unlike 2; and A, applying the project matrix to arbitrary
nonnegative vectors in R"”, R; and R, apply the next genera-
tion matrix to arbitrary nonnegative vector in Ran(Q). More
strict discussion about this is provided in Appendix G.

Application to interacting model

We now study the effect of homing fidelity on transient
population growth rates measured by R; and R, based on
the interacting model (12). The fecundity matrix in model
(12), denoted by (f;, ;). is a ten by ten matrix with only four
nonzero elements: fj g = b1mé’2, fi.10 = blm;"‘, fas =
b3m3’2, and f310 = b3m2’4. Thus, the corresponding next
generation matrix, denoted by Q := (g;;), is a ten by
ten singular matrix with nonzero elements in the first and
fourth rows, and zero elements in other rows. The associated
dominant submatrix Qj is then given by

11 914
Qs = (q a )
qa1 444
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Therefore,

R; = min{q11 + 41, q14 + qa4}, (22)
and

R, = max{q11 + g1, q14 + q44}. (23)

Furthermore, following the proof of Eq. 6 (Appendix
B), we can regard R; as the intergenerational growth rate
when all individuals as eggs initially distributed in the poor
quality patch (say patch 1), that is ||Qx||; = R; when
x=1[1,0,0,0,0,0,0,0,0,0]". Similarly, the generational
growth rate is R, if all individuals as eggs are initially
distributed in the good quality patch.

Following Fig. 5, both R; and R,, are functions in connec-
tivity strength €. As an example, we use the same parameters
as those in Fig. 6 and choose € € [0, 1] to calculate R;(¢)
and R, (¢). The graph of functions Ry(€), R;(€), and R, (¢€)
are compared in Fig. 9. When € = 0, the overall population
is divided into two disjoint subpopulations (Fig. 5), and the
four patch model reduces to two-disjoint two-patch models.
Noticing that the fecundity matrix for each two-patch model
has only one nonzero element, we have Rll’2 = R(l)’2 = R,l’z
and Rl3’4 = RS’4 = RS’4. Similarly, when € = 1, Rl3’2 =
RY*=Ry*and R = Ry = Ry

When 0 < € < 1, as shown in the Fig. 9, the connectivity
strength € affects Rg and R, in similar way, but R; in differ-
ent way. To reduce the danger of population extinction in a
generation, evaluated by the lowest generation growth rate
R;, one needs to choose € which is not close 0 or 1 so as to
maximize R;(€), even though Ry reaches low values when €
is not close to 0 or 1. In other words, strong homing fidelity
can increase the extinction hazard of endangered migratory
salmonids in a single generation, even while increasing Ry
and R,.
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Discussion

Most models of population dynamics assume that species’
resource are homogeneous in space (Fahrig and Merriam
1985). This assumption is often made in order to simplify
mathematical analysis. However, spatial heterogeneity is
one of the most obvious features of the natural world and
is a key factor influencing population dynamics (Kareiva
1990). Populations experience spatial variation in environ-
mental factors (e.g., temperature, precipitation, resource
availability, and predation risk) which influence survivor-
ship and reproduction, individuals can modulate their fitness
(i.e., the net reproductive rate) by dispersing or migrat-
ing across space. Hence, interactions between movement
and spatial heterogeneities determine how quickly a pop-
ulation grows or declines (Schreiber 2010). Understanding
the interplay between connectivity (dispersal and migra-
tion) and local population dynamics allows persistence in a
network of heterogeneous space is a central issue in pop-
ulation biology and has received increasing attention from
theoretical, empirical and applied perspectives (Allen 1987;
Gadgil 1971; Hamilton and May 1977; Hastings and Bots-
ford 2006; Horn and Macarthur 1972; Kareiva 1990; Levin
et al. 1984; Rieman and Dunham 2009; Schreiber 2010;
Thomas and Kunin 1999; Vance 1984).

Research on the persistence of spatially structured popu-
lations has produced both theoretical and empirical evidence
for a range of possible types of populations through vari-
ous types of interacting systems of subpopulations (Hanski
and Gilpin 1997; Thomas and Kunin 1999). Such popu-
lation systems have generally been divided into discrete
categories; for example, populations may be deemed to
be “sources” or “sinks” (Pulliam 1988). As an important
factor affecting population dynamics, demographic con-
nectivity (dispersal and migration) among subpopulation’s

14
Ry —

Reproductive rates

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Connectivity, e

Fig. 9 Comparison of the graphs of functions Ry (¢€), R;(¢), and R, (¢). We use the same parameters as those in Fig. 6
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can contribute significantly to population growth rates, and
ultimately population persistence. Therefore, assessing the
effects of demographic connectivity on population persis-
tence is crucial for understanding population biology and
evolution in natural systems.

The main question we address in this paper is how the
migration of individuals between spatially discrete habitats
affects the long-run and short-run reproductive rates of mi-
gratory populations. We choose salmonidae as our study fo-
cus. Based on the life cycle of salmonds, we develop resi-
dent and migratory population models and extend the migra-
tory population model to an interacting model. Unlike most
stage-structured interacting models where population can
complete its life cycle in each habitat, in the models for
migratory salmonid, each habitat only supports part of
stages.

With the underlying assumption that external conditions
remain stable for long enough for the long-term dynam-
ics to be reached, the results of asymptotic analysis about
the dependence of Ry on connectivity strength € provide
useful insights into the dynamics of interacting popula-
tions. In practice, when populations live in a stable or rather
narrow range of predictable environment, we are likely to
be concerned with their asymptotic long-term reproductive
rate, measured by Ry. However, when populations con-
front environmental change and stochastic disturbance, their
dynamics may never settle to behavior predicted by model
asymptotics. Instead, populations can show transient growth
or decay. In this case, Ry is unable to predict the short-
term transient dynamics that can arise. If we consider a
endangered, threatened species, we should use R; to assess
the risk of extinction. If R; < 1 and we introduce Ny indi-
viduals, then it is possible that after a single generation we
will have R; Ny individuals remaining. If this number falls
below an extinction threshold, we could have population
extinction even if Ry > 1. On the other hand, R, would
be more applicable when assessing the threat posed by
invasive species. Therefore, the long-term measure Ry and
short-term measures R; and R, are complementary, giving
a range of valuable information for population conservation
and management.

In the salmonidae example, we have studied the effect of
migration behavior on the reproductive rate based on a four-
patch model, where two patches are located in upstream and
other two patches are located in downstream. However, in
consideration of the fact that more than two streams
might be located in upstream or downstream, one may
want to construct a more complex multiple-patch model
(Appendix H).

It is worth pointing out that, as with the four-patch model,
multiple-patch model (33) assumes there is no population
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dispersing directly between upstream patches or directly
between downstream patches. Therefore, two upstream
patches do not interact with each other directly, but only
indirectly through the migration which take place between
downstream and upstream.

In the analysis, we use the same connectivity strength €
to evaluate the interactions between different four patches
(Fig. 5). In reality, different connectivity strengthes may be
related to different migration paths. An investigation on the
effect of different connectivity strengths relevant to the dif-
ferent migration paths on Ry is challenging and is left for
future work.

We believe that the approach used in this paper is
applicable in general to other migratory species. It is
our hope that the conclusion about the effect of migra-
tion behaviors on population persistence will provide an
insight to further understand the dynamics of migratory
population. In addition, we hope to encourage the con-
nection of data to these models in order to further under-
stand their potential as management tools for assessing
persistence of migratory populations under varying living
conditions.
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Appendix A: Graph reduction method

This method starts with the description of the projection
matrix as a life cycle graph. Once the life cycle graph has
been specified, the calculation procedure is as follows. (1)
Identify survivorship and fecundity transitions. (2) Multiply
all fecundity transitions in the graph by R; '.(3) Elimi-
nate survivorship self-loops, using rule a in Fig. 10. (4)
Reduce the graph using the graph reduction rules defined in
Figure I until only nodes with fecundity self-loops are left.
When a node is eliminated, all pathways that go through
that node have to be recalculated. (5) If only one node
with a single self-loop is left, eliminate the final node by
setting the self-loop equal to 1 and solve this equation
for Ry.
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a @L@Db Oa/(l—b)@

b CZ:?:K) o =G

a b ab
c OO - O©
Fig. 10 Graph reduction rules. a self-loop elimination with b < 1.
b Parallel path elimation. ¢ Node elimination. Rules a and b show
elimination of paths, and rule ¢ shows the elimination of node 2. Graph

reduction is done by repeatedly applying these rules until only nodes
are left

Appendix B: Proof of (6)

To investigate the function Px, we let P = (p;j),xn and
x =[x1,x2, - ,x,]T. A simple calculation gives

n n n
x|l =) pixi+ Y piaxa+--+ Y pinkn, (24)
i=1 i=1 i=1

n
Noticing that ) p;j(j = 1,--- ,n) is the 7™ column sum
i=1
of the matrix P, we consider the smallest such column
n
sum of P. Suppose that for some 1 < k < n, ) piy =
=
" 1
mini<j<, Y pij, then the function [[Px||; has minimum
=
n 1
value ) p;r when x is a unit vector with x; = 1 and x;=0

i=1
(j # k). That is to say,
n

1=

the minimum sum of column vectors of projection matrix P.

Appendix C: R, for resident salmonids

In terms of the life cycle of resident species, we divide the
population into four groups: fertilized egg (E), fry (F),
juvenile (J), and adult (A). We take time unit to be 1 year.
The population vector is x(t) = [E(¢), F(t), J (1), AT,
which represents the population density of each stage at the
end of the breeding season in year 7. We relate the popula-
tion density of each stage at time 741 to time ¢ by the matrix
equation

x(t +1) = Px(t), (26)

where the projection matrix P is

0O 0 0 b
p_|pre 0 0 0
0 pjrpjj O
0 0 Paj Paa

Here, b is the average number of fertilized eggs produced
per adult per year, py, is the proportion of eggs that hatch
to fry stage each year, p ;s is the proportion of fry that sur-
vive to the juvenile stage each year, p;; is the proportion
of juveniles that survive to remain as a juvenile per year,
Paj 18 the proportion of juveniles that survive to become
adults each year, p,, is the proportion of adults that survive
each year. The vital rates of salmonids living a variety of
environment have been estimated by many researchers (e.g.,
(Al-Chokhachy and Budy 2008; Bowerman and Budy 2012;
McPhail and Baxter 1996)).

The matrix Eq. 26 models the dynamics of resident
salmonids population. The net reproductive rate, Ry, for
this population can be calculated using the graph reduction
method, as mentioned in Appendix A. The graph reduction
method is shown in Fig. 11.

From the equation of Ry (Fig. 11d), we see that the
proportion of individuals that start as eggs and eventually
mature and survive to become breeding adults is pr.pjy
Paj/[(1 — pjj)(A — paa)], and the expected number of
eggs produced per breeding adult is b. Multiplying these
quantities yields Ry.

bRy!

Dfe /F\pjf/(l 7pjj)/j\paj/(1 — Paa)

NG L/
c @3 bRy ' PreDisPaj
(1 - pjj)(l - paa)
d R = — UPsePirPaj

(1 =pjj)(1 = Paa)

Fig. 11 a The full transformed graph. b Eliminating self-loops. ¢
Eliminating nodes F, J, and A. d Solving for Rg
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Appendix D

Fig. 12 b Eliminating
self-loops. ¢ Eliminating node
Ji. d Eliminating nodes Fy, J3,
and A,

Appendix E

EREALGS

ri=(1- m%l — m?l)p}f, s1=(1- m?l — m}*l)p]l-j, rg=(1- m?‘g — 7n§3)p?f, s3=(1— m]z:

(1 —mys)pjy m;pj;

b @ De /F\ 1 — (1 —my)pj; G\ 1—pjj /J)paj/(lfpaa)

\L\UJ/YU

mypir/ (1= pjj)

bmg Ry 1

(1 —myg)p;rm;pj; 4 epis

e L= =my)pj;)(L —pjj) 1 —pj; aj/ (1 = Paa
c@pf@(( )pii)(1 = pjj5) p@p/(p)

d bTrLaRalpfepaj < (1 — ’ﬂlf)pjfTTLjpjj n mep;f )
1= Paa (1= =my)pj)(1 =pj;)  1—pj;

mypiy/ (1= pj;)

41,41 4
it /(1= )
77’1;1])]2}/(1 _ pr) J £33 73

mini}/ = p)

3 23, 23 > 2 2 Pay
Pfe 3/ (1 — s3 (m3°p7)/ (1 — pj; Paj/ (1 = Paq) 1—pk
@_f: o /( ) Q i Pjj ' @01 “ e ua
[ Z
23 o . 43, 43 4
mPpit/(1—p3)) m°pji /(1 = pj;)
mgzbgRgl
mi?h Ry m3tby Ryt

mity Ral

3 43,3
- m;7)py;

Fig. 13 b Eliminating self-loops. ¢ Eliminating nodes E|, E3, A> and A4. d Eliminating nodes J; and J3. e Eliminating nodes J, and Jy. f

Eliminating nodes F3
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m'pl/(1—pl;)

41,41 4
77lepjj/(1 *ij)

w32/ - 7))

43,43 4
myp;7/(1 = pj;)
m?lp?]l/(l _ P?j frif Ji

/(=) o~ m;pys /(1= pj;

pa;mibspt Ry /(1 - ph,)

4 34 3 —1 4
. — PajMa biipfeRo /(1 = Paa)
Payma bipf Ry /(1= ph,)

Pagma' by Ryt /(1= ph)

mivf)
d 1‘]’?]' (1 _51)(1 _Péj)
mity i)
L=pj;  (L=s)(=ph) mPpj} rampj;

1- p?j (1—s3)(1— P?j)

23,23 . 23,23
77Lf ])]-f ’!37TL]~ pjj

-9, (=)=

pij mingp? Ry !
1- pgu

pzjm}fblp}eRO_l

4 34 3 —1
112, PagMa baPpelty

1 _p‘éa

p?ljmé/lblp}'eRal
1- péa

Fig. 13  (continued)
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Fig. 13  (continued)

e

(921932 + ga1934) Ry !

(921912 + 941914)1?,61 @ (923932 + 943934)1?61

f

(923912 + gazgra) Ryt

(921932 + ga1934) Ry !

(921912 + ga114) Ry C@D — (923912 + g13914) Ry *
0 1 — (g23gs2 + gazgsa) Ry " 0

Appendix F: An analytical calculation of 9 R/de when €
is close to 0 and 1

We differentiate the Eq. 15 with respect to € to get

dRo 2 27 9Ro
2Ro= " +12A(1 — €) — 2Be]Ro [A(l — €+ Be ] e
€ €

—c (2e — 66 + 463) F4DE —4E(1 — )} =0.

Thus,
dRy _ 2ARg(c — 1) +2BRye + C (2¢ — 6¢? +4¢3) —4De> +4E(1 —¢)?
e 2Ry — A(l — €)2 — Be2 :
(27)
Hence,
dRy —2ARy(0")+4E

lim 0 — 0 (07) . (28)
e—~0+ J€ 2Rp(0t) — A

Noticing that Ro(0") = max{G21G12, G43G34)}, we find

lim dRy _ —2(G21G12 + G43G34) max{G21G 12, G43G34} +4G21G12G43G34
e—0t Oe 2max{G21G12, G43G34} — G21G12 — G43G34
= —2max{G21G12, G43G34}. 29)

Since Ry(17) = max{G3G32, G41G 14}, similar com-
putation yields

IR
lim =0 — 2 max{G23G32, G41G1a). (30)
e—~>1— €

If 0 < € « 1, the function Ry(€) can be approximated by a
straight line

. OR
o~ 200+ (g 52)
=
= max{G21G12, G43G34}

—2max{G21G12, G43G34}e, (€29)

with negative slope.
Similarly, if € is less than and sufficiently close to 1, then
we have

_ . 0Rg
Ro(e) ~ Ro(17) + lmln_ e (e—1)
€E—>
= —max{G23G32, G41G 14}
+2max{Gr3G32, G41G14}€. (32)

with positive slope.

@ Springer

Appendix G: Further discussion about R; and R,

For the matrix Q, we define the range of Q as Ran(Q) =
{Qx|x € R"}, and the null space of Q as N (Q) = {x €
R"|Qx = 0}.

Then both Ran(Q) and N (Q) are subspaces of R”, and
R" = Ran(Q) P N (Q). Therefore, for any x € R”", there
exists unique xran € Ran(Q) and unique x s such that x =
XRan + XA/ Thus, for any x € R”, Qx = Qxgan + Qxpnr =
Qxran + 0. The projection of any x € xn will give zero
individual in the next generation, which is not of biologi-
cal interest. For this reason, we restrict x € Ran(Q) when
defining R; and R,,.

Appendix H: A multiple-patch model

If we assume that there are / small rivers in upstream and
K big rivers in downstream, it is not difficult to extend the
four-patch model (12) to a multiple-patch model:

K
Ei(t+1) = Y bimifAr(t)
k=1

Fit+1) = p Ei()
Jit+1) = (1 - ZM;) PipFi() + (1 - Zm’;') P i)
k=1 k=1

1
@+ =Y <m_’;? P Fr (1) + mh phi g, (z))
i=1

Akt +1) = pliJe(t) + plAr(®), (33)
fori=1,2,---,landk=1,2,--- , K.
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